Search results for "Complexity function"

showing 4 items of 4 documents

A NEW COMPLEXITY FUNCTION FOR WORDS BASED ON PERIODICITY

2013

Motivated by the extension of the critical factorization theorem to infinite words, we study the (local) periodicity function, i.e. the function that, for any position in a word, gives the size of the shortest square centered in that position. We prove that this function characterizes any binary word up to exchange of letters. We then introduce a new complexity function for words (the periodicity complexity) that, for any position in the word, gives the average value of the periodicity function up to that position. The new complexity function is independent from the other commonly used complexity measures as, for instance, the factor complexity. Indeed, whereas any infinite word with bound…

Average-case complexityDiscrete mathematicsFibonacci numberSettore INF/01 - InformaticaGeneral Mathematicscomplexity functionComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Function (mathematics)periodicitycritical factorization theoremCombinatoricsComplexity indexCombinatorics on wordsBounded functionComplexity functionComputer Science::Formal Languages and Automata TheoryWord (computer architecture)Combinatorics on wordMathematicsInternational Journal of Algebra and Computation
researchProduct

On a Conjecture on Bidimensional Words

2003

We prove that, given a double sequence w over the alphabet A (i.e. a mapping from Z2 to A), if there exists a pair (n0, m0) ∈ Z2 such that pw(n0, m0) < 1/100n0m0, then w has a periodicity vector, where pw is the complexity function in rectangles of w.

Discrete mathematicsConjectureGeneral Computer ScienceExistential quantificationTheoretical Computer ScienceCombinatoricsCombinatorics on wordsFormal languageComplexity functionPattern matchingAlphabetDouble sequenceComputer Science(all)Mathematics
researchProduct

Cyclic Complexity of Words

2014

We introduce and study a complexity function on words $c_x(n),$ called \emph{cyclic complexity}, which counts the number of conjugacy classes of factors of length $n$ of an infinite word $x.$ We extend the well-known Morse-Hedlund theorem to the setting of cyclic complexity by showing that a word is ultimately periodic if and only if it has bounded cyclic complexity. Unlike most complexity functions, cyclic complexity distinguishes between Sturmian words of different slopes. We prove that if $x$ is a Sturmian word and $y$ is a word having the same cyclic complexity of $x,$ then up to renaming letters, $x$ and $y$ have the same set of factors. In particular, $y$ is also Sturmian of slope equ…

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata Theory0102 computer and information sciences68R15Characterization (mathematics)[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]01 natural sciencesTheoretical Computer ScienceCombinatoricsConjugacy class[INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL][MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]FOS: MathematicsDiscrete Mathematics and CombinatoricsMathematics - Combinatorics0101 mathematics[MATH]Mathematics [math]Discrete Mathematics and CombinatoricMathematicsDiscrete mathematicsFactor complexity010102 general mathematicsSturmian wordSturmian wordComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Sturmian wordsCyclic complexity factor complexity Sturmian words minimal forbidden factorInfimum and supremumToeplitz matrixComputational Theory and Mathematics010201 computation theory & mathematicsCyclic complexityBounded functionComplexity functionCombinatorics (math.CO)Word (group theory)Computer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

Matrix-based complexity functions and recognizable picture languages

2008

MatriceSettore INF/01 - InformaticaPicture LanguageComplexity functionsAutomata
researchProduct